HIPER: Hypergraph-based Investigation of Perturbation Effects and Resilience ============================================================================= .. image:: https://img.shields.io/badge/version-1.0.0-blue :alt: Version 1.0.0 .. image:: https://img.shields.io/badge/License-MIT-blue :alt: MIT License Welcome to HIPER's documentation! HIPER provides optimized data structures and algorithms for hypernetwork analysis and attack simulation. The library implements hypernetworks using efficient dict-of-sets representation to achieve O(1) amortized performance for most operations. Quick Start ----------- .. code-block:: python from hiper import Hypernetwork # Create new hypernetwork instance hn = Hypernetwork() # Add hyperedges connecting multiple nodes hn.add_hyperedge(0, [1, 2, 3]) hn.add_hyperedge(1, [2, 3, 4, 5]) hn.add_hyperedge(2, [1, 4, 6]) # Analyze network properties print(f"Network order: {hn.order()}") print(f"Network size: {hn.size()}") print(f"Average degree: {hn.avg_deg():.2f}") Key Features ------------ * **Optimized Data Structures**: Efficient dict-of-sets representation for O(1) amortized operations * **Attack Simulation**: Comprehensive security analysis through individual and coordinated attacks * **Resilience Analysis**: TOPSIS-based node ranking and removal strategies * **Modular Architecture**: Selective importing based on application requirements * **Comprehensive Metrics**: Detailed network characterization and structural features Table of Contents ----------------- .. toctree:: :maxdepth: 2 :caption: User Guide installation experiments examples .. toctree:: :maxdepth: 3 :caption: API Reference api/core api/datasets api/metrics api/simulation .. toctree:: :maxdepth: 1 :caption: License license Indices and tables ================== * :ref:`genindex` * :ref:`modindex` * :ref:`search`